Advanced matplotlib: Complete API reference & best practices

A comprehensive guide to matplotlib's advanced features, focusing on precise control, professional styling, and production-ready visualizations.

1. Configuration & environment setup

1.1. Global configuration with rcParams

1.2. Context managers for temporary settings

2. Advanced figure and axes management

2.1. GridSpec for complex layouts

2.2. Nested and irregular layouts

3. Precise positioning and spacing control

3.1. Manual axes positioning

3.2. Fine-tuning with subplots_adjust

4. Advanced annotation and text control

4.1. Comprehensive annotation options

5. Professional styling and themes

5.1. Custom style sheets

5.2. Publication-ready figures

4.2. Text positioning and transforms

5. Professional styling and themes

5.1. Custom style sheets

5.2. Publication-ready figures

6. Color management and colormaps

6.1. Advanced colormap usage

6.2. Color accessibility and best practices

7. Performance optimization

7.1. Efficient plotting for large datasets

7.2. Rasterization for complex plots

8. Backend selection and LaTeX support

8.1. Understanding matplotlib backends

Matplotlib uses backends to render figures. The backend determines how plots are displayed and what features are available. When running locally (not in a browser-based environment), you can choose backends that support advanced features like LaTeX rendering.

Key backend types:

  • Interactive backends: Qt5Agg, TkAgg, MacOSX - for GUI windows
  • Non-interactive backends: Agg, PDF, PS, SVG - for file output only
  • Notebook backends: notebook, widget - for Jupyter environments

For more details, see the official matplotlib backend documentation.

8.2. LaTeX rendering with matplotlib

When running matplotlib locally, you can use LaTeX for beautiful mathematical typography. This requires a LaTeX installation on your system.

The latex below won't be displayed as latex when directly executed in a browser environment with pyodide. You need to run it locally.

8.3. Backend selection for local execution

python
# Example of backend selection (for local Python scripts)
import matplotlib
matplotlib.use('Qt5Agg')  # Set backend before importing pyplot
import matplotlib.pyplot as plt

# Or check current backend
print(matplotlib.get_backend())

# Common backend choices:
# - 'Qt5Agg': High-quality interactive backend (requires PyQt5)
# - 'TkAgg': Default interactive backend (uses Tkinter)
# - 'Agg': High-quality non-interactive backend
# - 'pdf': Direct PDF output
# - 'svg': Scalable vector graphics output

Installation for LaTeX support:

bash
# On macOS
brew install --cask mactex

# On Ubuntu/Debian
sudo apt-get install texlive-full

# On Windows
# Download and install MiKTeX from https://miktex.org/

# Python packages
pip install matplotlib[latex]

Summary and quick reference

Key takeaways

  1. Configuration: Use rcParams for global settings, context managers for temporary changes
  2. Layout: Master GridSpec for complex layouts, subplots_adjust for fine-tuning
  3. Performance: Use appropriate plot types for data size, rasterize when needed
  4. Styling: Create custom styles for consistency, follow accessibility guidelines
  5. Export: Match format and DPI to intended use (web/print/publication)
  6. Backends: Choose appropriate backend for your environment and needs

Essential commands reference

python
# Configuration
plt.rcParams.update({...})          # Global settings
with plt.rc_context({...}):         # Temporary settings

# Layout
gs = GridSpec(rows, cols, ...)      # Complex layouts
plt.subplots_adjust(...)            # Fine spacing control
fig.add_axes([l, b, w, h])         # Manual positioning

# Performance
ax.plot(..., rasterized=True)       # Rasterize dense plots
ax.hexbin(x, y, ...)                # Efficient for large data

# Styling
plt.style.use('style_name')         # Apply style
ax.set_prop_cycle(...)              # Custom color cycle

# Export
fig.savefig('file.pdf', dpi=300, bbox_inches='tight')
plt.close(fig)                      # Free memory

# Backend & LaTeX
matplotlib.use('backend_name')      # Set backend
plt.rcParams['text.usetex'] = True  # Enable LaTeX

This comprehensive guide covers the advanced aspects of matplotlib not detailed in the basic tutorials, providing you with professional-level control over your visualizations.

Maths.pm  ne collecte aucune donnée.
  • Aucun cookie collecté
  • Aucune ligne de log écrite
  • Pas l'ombre d'une base de données distante
  • nihil omnino

  • Ni par pointcarre.app
  • Ni par notre hébergeur
  • Ni par aucun service tiers

Nous expliquons notre démarche zéro donnée conservée sur cette page.

Maths.pm, par

pointcarre.app

Codes sources
Logo licence AGPLv3
Contenus
Logo licence Creative Commons