Data Visualization: Course overview

Detailed plan and organization of the course

About this course

1️⃣ Session 1: Foundations & Graphic Semiology (3 hours)

Hour 1: Course Introduction & Visual Variables

Hour 2: Python: installation and philosophy

Hours 3: Data types & first graphs

2️⃣ Session 2: Static data vizualisation panorama

Any issue related to the proper execution of code on your machine must be solved during this session. Feel free to ask for help.

Hour 1 & 2: Static graphical representation panorama

Hours 3: Group work: project setup

3️⃣ Session 3: Advanced data vizualisation

Each group must have selected a dataset and a project scope during hour 3.

It's good practice to think about the story you want to tell with your data. Combined with the characteristics of your data, this will help you to choose the relevant graph types.

Even though data modeling is not the scope of this course, prelaminary knowledge of the correlations and or causations and "forces at play" can help a lot to build story statistically defended.

Hour 1

Hour 2

Hour 3

4️⃣ Session 4: Practical Work

Hours 1 & 2

Hour 3

5️⃣ Session 5: Finale session & project presentations

Hour 1

Hour 2 & 3

Datasets

Corrections

Maths.pm  ne collecte aucune donnée.
  • Aucun cookie collecté
  • Aucune ligne de log écrite
  • Pas l'ombre d'une base de données distante
  • nihil omnino

  • Ni par pointcarre.app
  • Ni par notre hébergeur
  • Ni par aucun service tiers

Nous expliquons notre démarche zéro donnée conservée sur cette page.

Maths.pm, par

pointcarre.app

Codes sources
Logo licence AGPLv3
Contenus
Logo licence Creative Commons